Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315011

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
2.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2038405

ABSTRACT

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Serpins , Cytokines , Epithelial Cells , Humans , Peptide Hydrolases , Pulmonary Disease, Chronic Obstructive/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , Serpins/pharmacology , Serpins/therapeutic use
3.
Sci Immunol ; 6(63): eabd0205, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430146

ABSTRACT

In humans, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is highly infective, often causes severe acute and/or long-term illness, and elicits a high rate of mortality, even in countries with sophisticated medical systems. Detailed knowledge on the immune responses underpinning COVID-19 (coronavirus disease 2019), and on strategies SARS-CoV-2 uses to evade them, can provide pivotal guidance to researchers and clinicians developing and administering potentially life-saving immunomodulatory therapies. The need for such therapies in COVID-19 is unlikely to abate soon given the emergence of variants of concern that may pose new challenges for some vaccines and neutralizing antibodies. Here, we summarize current knowledge on COVID-19 immunopathogenesis in relation to three clinical disease stages and focus on immune evasion strategies used by pathogenic coronaviruses such as skewing type I, II, and III interferon responses and inhibiting detection via pattern recognition and antigen presentation. Insights gained from bats, which exhibit minimal disease in response to SARS-CoV-2 infection, offer an informative perspective and may guide future development of new therapies. We also discuss how knowledge of immunopathology may inform therapeutic decisions, for example, on selecting the most appropriate immunotherapeutic agents and timing their administration, to reduce morbidity and mortality of COVID-19.


Subject(s)
COVID-19/immunology , Chiroptera/immunology , Chiroptera/virology , Immunologic Factors/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/virology , Humans
4.
Immunol Cell Biol ; 98(10): 805-806, 2020 11.
Article in English | MEDLINE | ID: covidwho-1007340

ABSTRACT

The December 2020 issue contains a Special Feature on Infection and Immunity, featuring selected presentations from the 10th Lorne Infection and Immunity Conference. The breadth and excellence of science presented at this meeting is encompassed by the articles in this issue by Lamiable et al., Saunders et al. and Chua et al.


Subject(s)
Immunity , Infections , Congresses as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL